Leaders Opinion: The Problems with LLM Benchmarks

The issues with LLM benchmarks extend beyond reliability
In the ever-evolving world of Language Model Benchmarks (LLMs), a question arises about their reliability. Critics argue that LLM benchmarks can be unreliable due to various factors, such as training data contamination and models overperforming on carefully crafted inputs. Avijit Chatterjee, Head of AI/ML and NextGen Analytics at Memorial Sloan Kettering Cancer Center, offers an interesting perspective on this debate. He emphasizes that widespread technology adoption often speaks louder than benchmarks. Chatterjee draws parallels between the LLM debate and historical database benchmarks, like TPC-C for OLTP and TPC-DS for Analytics. He notes that despite the fierce competition among database vendors in the past, today's leader in the cloud-native data warehouse market, Snowflake, no lon
Subscribe or log in to Continue Reading

Uncompromising innovation. Timeless influence. Your support powers the future of independent tech journalism.

Already have an account? Sign In.

📣 Want to advertise in AIM Media House? Book here >

Picture of 재은
재은
AIM is the world's leading media and analyst firm dedicated to advancements and innovations in Artificial Intelligence. Reach out to us at info@aimmediahouse.com
25 July 2025 | 583 Park Avenue, New York
The Biggest Exclusive Gathering of CDOs & AI Leaders In United States

Subscribe to our Newsletter: AIM Research’s most stimulating intellectual contributions on matters molding the future of AI and Data.